الوقود الحيوي: البدائل والحلول (5)

عاهد جمعة الخطيب
2022 / 7 / 3

وفقًا لـ Wanget al52 ، يُعتبر إنتاج الوقود الحيوي من الطحالب الدقيقة ذا إمكانات تجارية عالية بسبب
تكلفة تنافسية مقارنة بالوقود الأحفوري ، ولا حاجة إلى أراضي إضافية ، كما أنه يعزز جودة الهواء من خلال امتصاص ثاني أكسيد الكربون في الغلاف الجوي ، واستخدام الحد الأدنى من المياه. من ناحية أخرى ، تم الإبلاغ عن أن إنتاج الوقود الحيوي من الطحالب الدقيقة لا يزال محدودًا بعدة عوامل بما في ذلك انخفاض إنتاج الكتلة الحيوية ،
انخفاض نسبة الدهون في الخلايا ، وصغر حجم الخلايا مما يجعل عملية الحصاد مكلفة للغاية. ومع ذلك ، من الممكن التغلب على هذه القيود عن طريق تكنولوجيا الحصاد والتجفيف ، والهندسة الوراثية للمسارات الأيضية لمعدل نمو مرتفع ومحتوى دهني متزايد. لقد ثبت أن تقييم إنتاج الطحالب الحيوية الدقيقة بدأ منذ عام 1970 ، ولكن بسبب
مشاكل فنية واقتصادية في ذلك الوقت ، تأخرت الفكرة 53. أشارت جهود الباحثين في الدراسات اللاحقة إلى إمكانات عالية في إنتاج الوقود الحيوي من الطحالب الدقيقة.
المراجع:
1- Thiago Bruce, Astria D. Ferrão-Gonzales,
Yutaka Nakashimada, Yuta Matsumura,
Fabiano Thompson, TomooSawabe
(2015). Biofuel Innovation by Microbial
Diversity.Springer Handbook of Marine
Biotechnology, pp 1163-1180.
2- Pamela P. Peralta-Yahya, Fuzhong Zhang,
Stephen B. delCardayre, Jay D. Keasling
(2012). Microbial engineering for the
production of advanced biofuels. Nature,
488, 320-329.
3- Patrik, R. -dir-ect biological conversion of
solar energy to volatile hydrocarbon fuels
by engineered cyanobacteria, -dir-ect fuel,
http://www.-dir-ectfuel.eu/DFrenewFuel3.ht
ml(access on 5th October 2011).
4- Energy future coalition, energy future
coalition,
http://www.energyfuturecoalition.org/biof
uels/index.html (access on 13th October
2011).
5- Ragauskas A. J., Williams C. K., Davison
B. H., Britovsek G., Cairney J. , Eckert C.
A., Frederick W. J. Jr., Hallett J. P., Leak
D. J., Liotta C. L., Mielenz J. R., Murphy
R., Templer R. and Tschaplinski T.
(2006). The path forward for biofuels and
biomaterials Science 311, pages 484-489.
6- Goldemberg J. (2007). Ethanol for a
sustainable energy future Science 315,
pages 808-810.
7- Nass L. L., Pereira P. A. A. and Ellis D.
(2007). Biofuels in Brazil: An Overview
Crop Science 47:6, page 2228-2237.
8- Hansen, A. C., Zhang, Q., and Lyne, P. W
(2005). Ethanol-diesel fuel blends a
review. Bioresource Technology. 96, 277-
285.
9- Kádár Z. (2005) Biofuels from wastes and
by-products: Production of hydrogen and
ethanol by fermentation of paper sludge,
corn stover and wood Doctoral Thesis,
Budapest University of Technology and
Economics, Hungary.
10- Lin, Y., and Tanaka, S. (2006). Ethanol
fermentation from biomass resources:
current state and prospects. Applied
Microbiology Biotechnology .69, 627-
642.
11- Piskur, J., Rozpedowska, E., Polakova, S.,
Merico, A., and Compagno, C. (2006)
How did Saccharomyces evolve to
become a good brewer? Trends Genet. 22,
183-186.
12- Gottshalk, G. (1986). Bacterial
Metabolism. New york: Springer-Verlag,
Edition 2. 214-224.
13- Nicholas Macedo , Christopher J. Brigham
(2014). From beverages to biofuels: the
journeys of ethanol-producing
microorganisms.International journal of
biotechnology for wellness industries, 3,
79-87.
14- Jeffries TW (2005). Ethanol fermentation
on the move. Nat Biotechnol, 23: 40-1.
http://dx.doi.org/10.1038/nbt0105-40.
15- Dunn KL, Rao CV (2014). Expression of a
xylose-specific transporter improves
ethanol production by metabolically
engineered Zymomonasmobilis.
ApplMicrobiolBiotechnol, 98(15): 6897-
905. http://dx.doi.org/10.1007/s00253-
014-5812-6.
16- Lee KY, Park JM, Kim TY, Yun H, Lee
SY (2010). The genomescale metabolic
network analysis of Zymomonasmobilis
ZM4 explains physiological features and
suggests ethanol and succinic acid
production strategies. Microb Cell Fact,
9: 1-12. http://dx.doi.org/10.1186/1475-
2859-9-94.
17- Ingram LO, Conway T, Clark DP, Sewell
GW, Preston JF (1987). Genetic
engineering of ethanol production in
Escherichia coli. Appl Environ Microbiol,
53(10): 2420-5.
18- Yang S, Tschaplinski TJ, Engle NL, et al
(2009). Tran-script-omic and metabolomic
profiling of Zymomonasmobilis during
aerobic and anaerobic fermentations.
BMC Genomics, 10(34).
doi:10.1186/1471-2164-10-34.
Indian
19- Seo JS, Chong H, Park HS, et al (2005).
The genome sequence of the
ethanologenic bacterium
Zymomonasmobilis. Nat Biotechnol,
23(1): 63-8.
20- Swings J, De Ley J (1977). The Biology
of Zymomonas. Bacteriol Rev, 41(1): 1-
46.
21- Kalnenieks U, Galinina N, Toma MM,
Marjutina U (2002). Ethanol cycle in an
ethanologenic bacterium. FEBS Lett, 522:
6-8.
22- Dien BS, Cotta MA, Jeffries TW (2003).
Bacteria engineered for fuel ethanol
production: current status.
ApplMicrobiolBiotechnol, 63: 258-66.
23- P.Shruthi, T.Rajeshwari, B.R.Mrunalini,
V.Girish, and S.T.Girisha (2014).
Evaluation of Oleaginous Bacteria for
Potential Biofuel.
Int.J.Curr.Microbiol.App.Sci, 3(9): 47-57.
24- A. Demirbas¸, “Production of biodiesel
from algae oils,” Energy Sources Part A,
vol. 31, no. 2, pp. 163–168, 2009.
25- Hull., (2010). Patterns of Accumulation. J.
Mol. Catal. B Enz., 62: 9 14.
26- Xin, M., Jianming, Y., Xin, X., Lie, Z.,
Qingjuan, N., Mo X., (2009). Biodiesel
production fromoleaginous
microorganisms. Renew. Energy., 34: 1 5.
27- Joseph Gonsalves, B., (2006).
Anassessment of the biofuels industryin
India. United Nations Conferenceon Trade
and Development.
UNCTAD/DITC/TED/2006/6.
28- Li, Y., Zhao, Z.K., Bai, F. (2007).
Highdensity cultivation of oleaginousyeast
Rhodosporidiumtoruloides Y in fed batch
culture. Enz. Microb. Technol., 41: 312
317.
29- Papanikolaou, S., Galiotou-Panayotou, M.,
Fakas, S., Aggelis, G. (2007). Lipid
production by oleaginous Mucorales
cultivated on renewable carbon sources.
Eur. J. Lipid Sci. Technol., 109: 1060
1070.
30- Chen, H.C., Liu, T.M., (1997). Inoculum
effects on the production of
gammalinolenic acid by the shake culture
of Cunninghamellaechinualata CCRC
31840. Enz. Microb. Technol., 21: 137
142.
31- Peng, X., Chen, H. (2008). Rapid
estimation of single cell oil content of
solid-state fermented mass using nearinfrared
spectroscopy. Biores. Technol.,
299: 8869 8872.
32- KorneelRabaey, Nico Boon, Steven D.
Siciliano, Marc Verhaege, Willy
Verstraete (2004). Biofuel Cells for
Microbial Consortia That Self-Mediate
Electron Transfer. APPLIED AND
ENVIRONMENTAL MICROBIOLOGY,
70 (9): 5373–5382.
33- Rao, J. R., G. J. Richter, F. Vonsturm, and
E. Weidlich (1976). Performance of
glucose electrodes and characteristics of
different biofuel cell constructions.
Bioelectrochem.Bioenerg. 3:139–150.
34- Bond, D. R., and D. R. Lovley (2003).
Electricity production by
Geobactersulfurreducens attached to
electrodes. Appl. Environ. Microbiol.
69:1548–1555.
35- Bond, D. R., D. E. Holmes, L. M. Tender,
and D. R. Lovley (2002). Electrode
reducing microorganisms that harvest
energy from marine sediments. Science
295:483–485.
36- Escobar-Nin˜o A, Luna C, Luna D,
Marcos AT, Ca´novas D, et al. (2014)
Selection and Characterization of Biofuel-
Producing Environmental Bacteria
Isolated from Vegetable Oil-Rich Wastes.
PLoS ONE 9(8): e104063.
doi:10.1371/journal.pone.0104063.
37- Kyle F. Davis, Paolo D’Odorico, Maria
Cristina Rulli (2014).Land grabbing: a
preliminary quantification of economic
impacts on rural livelihoods.Popul
Environ, 36:180–192.
38- Godfray, H. C. J., Beddington, J. R.,
Crute, I. R., Haddad, L., Lawrence, D.,
Muir, J. F., et al. (2010). Food security:
The challenge of feeding 9 billion people.
Science, 327, 812–818.
39- Srikanth Reddy Medipally, Fatimah Md.
Yusoff, Sanjoy Banerjee, and M. Shariff
(2015). Review Article Microalgae as
Sustainable Renewable Energy Feedstock
for Biofuel Production. BioMed Research
International, Article ID 519513, 13
pages.
40- M. Tabatabaei, M. Tohidfar, G. S.
Jouzani, M. Safarnejad, and M. Pazouki,
“Biodiesel production from genetically
engineered microalgae: future of
bioenergy in Iran,” Renewable and
Sustainable Energy Reviews, vol. 15, no.
4, pp. 1918–1927, 2011.
41- A. Demirbas¸, “Production of biodiesel
from algae oils,” Energy Sources Part A,
vol. 31, no. 2, pp. 163–168, 2009.
42- L. Brennan and P. Owende, “Biofuels
from microalgae—a review of
technologies for production, processing,
and extractions of biofuels and coproducts,”
Renewable and Sustainable
Energy Reviews, vol. 14, no. 2, pp. 557–
577, 2010.
43- FAO, Sustainable Bioenergy: A
Framework for Decision Makers, United
Nations Energy, 2007.
44- FAO, The State of Food and Agriculture,
Food and Agriculture Organization, New
York, NY, USA, 2008
45- Y. Li and J. G. Qin, “Comparison of
growth and lipid content in three
Botryococcusbrauniistrains,” Journal of
Applied Phycology, vol. 17, no. 6, pp.
551–556, 2005.
46- J. G. Qin and Y. Li, “Optimization of the
growth environment of
Botryococcusbraunii Strain CHN 357,”
Journal of Freshwater Ecology, vol. 21,
no. 1, pp. 169–176, 2006.
47- J. Qin, Bio-Hydrocarbons from Algae:
Impacts of Temperature, Light and
Salinity on Algae Growth, Rural
Industries Research and Development
Corporation, Australian Government,
2005.
48- Y. Chisti, “Biodiesel from microalgae,”
Biotechnology Advances, vol. 25, no. 3,
pp. 294–306, 2007.
49- A. R. Rao, R. Sarada, V. Baskaran, and G.
A. Ravishankar, “Antioxidant activity of
Botryococcusbraunii extract elucidated in
vitro models,” Journal of Agricultural and
Food Chemistry, vol. 54, no. 13, pp.
4593–4599, 2006.
50- E. E. Powell and G. A. Hill, “Economic
assessment of an integrated bioethanolbiodiesel-
microbial fuel cell facility
utilizing yeast and photosynthetic algae,”
Chemical Engineering Research and
Design, vol. 87, no. 9, pp. 1340–1348,
2009.
51- T. M. Mata, A. A. Martins, and N. S.
Caetano, “Microalgae for biodiesel
production and other applications: a
review,” Renewable and Sustainable
Energy Reviews, vol. 14, no. 1, pp. 217–
232, 2010.
Indian Research Journal of Pharmacy and Science, A. J. Alkhatib et.al [Sept’15]
Ind Res J Pharm & Sci. | 2015:Sept.: 2(3) 234
52- B. Wang, Y. Li, N. Wu, and C. Q. Lan,
“CO2 bio-mitigation using microalgae,”
Applied Microbiology and Biotechnology,
vol. 79, no. 5, pp. 707–718, 2008.
53- W. C. W. Barkley, R. A. Lewin, and L.
Cheng, Development of Microalgal
Systems for the Production of Liquid
Fuels, Edited by T. Sadler, Elsevier
Applied Science, Villeneuve d’Ascq,
France, 1987.
54- Y. Li, M. Horsman, N. Wu, C. Q. Lan,
and N. Dubois-Calero, “Biofuels from
microalgae,” Biotechnology Progress, vol.
24, no. 4, pp. 815–820, 2008.

حوار مع الباحثة اللبنانية د. ريتا فرج حول الاسلام والجندر واتجاهاته الفكرية في التاريخ المعاصر
الموقف من الدين والاسلام السياسي، حوار مع د. صادق إطيمش حول الاوضاع السياسية والاجتماعية في العراق